The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients:
(λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0,
where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our...
Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.
The main result: Let be a -torsion free semiprime ring and let be an additive mapping. Suppose that holds for all . In this case is a centralizer.
Let be a commutative ring, be a generalized matrix algebra over with weakly loyal bimodule and be the center of . Suppose that is an -bilinear mapping and that is a trace of . The aim of this article is to describe the form of satisfying the centralizing condition (and commuting condition ) for all . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) has the so-called proper form from a new perspective. Using the aforementioned...
Let be a division ring finite dimensional over its center . The goal of this paper is to prove that for any positive integer there exists the th multiplicative derived subgroup such that is a maximal subfield of . We also show that a single depth- iterated additive commutator would generate a maximal subfield of
Let be an associative ring with identity and the Jacobson radical of . Suppose that is a fixed positive integer and an -torsion-free ring with . In the present paper, it is shown that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (ii) is replaced by (ii)’ , for all . Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
In this paper we investigate commutativity of rings with unity satisfying any one of the properties:
for some in and , in , where , , , , are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements and for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize...
Suppose that is an associative ring with identity , the Jacobson radical of , and the set of nilpotent elements of . Let be a fixed positive integer and an -torsion-free ring with identity . The main result of the present paper asserts that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (i) and (ii) are replaced by (i)
Let , and be fixed non-negative integers. In this note, it is shown that if is left (right) -unital ring satisfying (, respectively) where , then is commutative. Moreover, commutativity of is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
In this paper we investigate commutativity of ring with involution which admits a derivation satisfying certain algebraic identities on Jordan ideals of . Some related results for prime rings are also discussed. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.
Currently displaying 1 –
20 of
21