Displaying 381 – 400 of 453

Showing per page

The Chern character for Lie-Rinehart algebras

Helge Maakestad (2005)

Annales de l'institut Fourier

Let A be a commutative S -algebra where S is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras L over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a L -connection. Our result generalizes the classical Chern character from the K -theory of A to the algebraic De Rham cohomology.

The Connes-Kasparov conjecture for almost connected groups and for linear p -adic groups

Jérôme Chabert, Siegfried Echterhoff, Ryszard Nest (2003)

Publications Mathématiques de l'IHÉS

Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.

The Hochschild cohomology of a closed manifold

Yves Felix, Jean-Claude Thomas, Micheline Vigué-Poirrier (2004)

Publications Mathématiques de l'IHÉS

Let M be a closed orientable manifold of dimension dand 𝒞 * ( M ) be the usual cochain algebra on M with coefficients in a fieldk. The Hochschild cohomology of M, H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is a graded commutative and associative algebra. The augmentation map ε : 𝒞 * ( M ) 𝑘 induces a morphism of algebras I : H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) H H * ( 𝒞 * ( M ) ; 𝑘 ) . In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of H H * ( 𝒞 * ( M ) ; 𝑘 ) , which is in general quite small. The algebra H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is expected to be isomorphic...

The image of the natural homomorphism of Witt rings of orders in a global field

Beata Rothkegel (2013)

Acta Arithmetica

Let R be a Dedekind domain whose field of fractions is a global field. Moreover, let 𝓞 < R be an order. We examine the image of the natural homomorphism φ : W𝓞 → WR of the corresponding Witt rings. We formulate necessary and sufficient conditions for the surjectivity of φ in the case of all nonreal quadratic number fields, all real quadratic number fields K such that -1 is a norm in the extension K/ℚ, and all quadratic function fields.

Currently displaying 381 – 400 of 453