The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 10175

Showing per page

A free group of piecewise linear transformations

Grzegorz Tomkowicz (2011)

Colloquium Mathematicae

We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.

A Galois D -groupoid for q -difference equations

Anne Granier (2011)

Annales de l’institut Fourier

We first recall Malgrange’s definition of D -groupoid and we define a Galois D -groupoid for q -difference equations. Then, we compute explicitly the Galois D -groupoid of a constant linear q -difference system, and show that it corresponds to the q -difference Galois group. Finally, we establish a conjugation between the Galois D -groupoids of two equivalent constant linear q -difference systems, and define a local Galois D -groupoid for Fuchsian linear q -difference systems by giving its realizations.

A Game Theoretical Approach to The Algebraic Counterpart of The Wagner Hierarchy : Part II

Jérémie Cabessa, Jacques Duparc (2009)

RAIRO - Theoretical Informatics and Applications

The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed ω-semigroups of width 2 and height ωω. This paper completes the description of this algebraic hierarchy. We first give a purely algebraic decidability procedure of this partial ordering by introducing a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of any ω-rational language can therefore be computed...

A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : Part I

Jérémie Cabessa, Jacques Duparc (2009)

RAIRO - Theoretical Informatics and Applications

The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on...

A Garside presentation for Artin-Tits groups of type C ˜ n

F. Digne (2012)

Annales de l’institut Fourier

We prove that an Artin-Tits group of type C ˜ is the group of fractions of a Garside monoid, analogous to the known dual monoids associated with Artin-Tits groups of spherical type and obtained by the “generated group” method. This answers, in this particular case, a general question on Artin-Tits groups, gives a new presentation of an Artin-Tits group of type C ˜ , and has consequences for the word problem, the computation of some centralizers or the triviality of the center. A key point of the proof...

Currently displaying 181 – 200 of 10175