The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 321 – 340 of 668

Showing per page

Commutative subloop-free loops

Martin Beaudry, Louis Marchand (2011)

Commentationes Mathematicae Universitatis Carolinae

We describe, in a constructive way, a family of commutative loops of odd order, n 7 , which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group 𝒜 n .

Commutative zeropotent semigroups with few invariant congruences

Robert El Bashir, Tomáš Kepka (2008)

Czechoslovak Mathematical Journal

Commutative semigroups satisfying the equation 2 x + y = 2 x and having only two G -invariant congruences for an automorphism group G are considered. Some classes of these semigroups are characterized and some other examples are constructed.

Commutator subgroups of the extended Hecke groups H ¯ ( λ q )

Recep Şahin, Osman Bizim, I. N. Cangul (2004)

Czechoslovak Mathematical Journal

Hecke groups H ( λ q ) are the discrete subgroups of P S L ( 2 , ) generated by S ( z ) = - ( z + λ q ) - 1 and T ( z ) = - 1 z . The commutator subgroup of H ( λ q ) , denoted by H ' ( λ q ) , is studied in [2]. It was shown that H ' ( λ q ) is a free group of rank q - 1 . Here the extended Hecke groups H ¯ ( λ q ) , obtained by adjoining R 1 ( z ) = 1 / z ¯ to the generators of H ( λ q ) , are considered. The commutator subgroup of H ¯ ( λ q ) is shown to be a free product of two finite cyclic groups. Also it is interesting to note that while in the H ( λ q ) case, the index of H ' ( λ q ) is changed by q , in the case of H ¯ ( λ q ) , this number is either 4 for...

Commutators and associators in Catalan loops

Jan M. Raasch (2010)

Commentationes Mathematicae Universitatis Carolinae

Various commutators and associators may be defined in one-sided loops. In this paper, we approximate and compare these objects in the left and right loop reducts of a Catalan loop. To within a certain order of approximation, they turn out to be quite symmetrical. Using the general analysis of commutators and associators, we investigate the structure of a specific Catalan loop which is non-commutative, but associative, that appears in the original number-theoretic application of Catalan loops.

Currently displaying 321 – 340 of 668