Displaying 681 – 700 of 836

Showing per page

Sur la cohomologie de la compactification des variétés de Deligne-Lusztig

Haoran Wang (2014)

Annales de l’institut Fourier

Nous étudions la cohomologie de la compactification des variétés de Deligne-Lusztig associées aux éléments de Coxeter. Nous présentons une conjecture des relations entre la cohomologie de la variété et la cohomologie de ses compactifications partielles. Nous prouvons la conjecture dans le cas du groupe linéaire général.

Sur la théorie des invariants des groupes classiques

Thierry Vust (1976)

Annales de l'institut Fourier

On donne une forme géométrique à la théorie classique des invariants pour le groupe spécial linéaire, le groupe orthogonal et le groupe symplectique. On démontre aussi un critère de normalité pour les variétés algébriques affines où opère un groupe algébrique réductif connexe.

Sur la théorie élémentaire des groupes libres

Frédéric Paulin (2002/2003)

Séminaire Bourbaki

Sela a annoncé une solution complète d’un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu’un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des groupes limites (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu’un groupe libre). Nous indiquerons quelques outils utilisés par Sela...

Sur l'accessibilité acylindrique des groupes de présentation finie

Thomas Delzant (1999)

Annales de l'institut Fourier

Soit G un groupe et τ un G -arbre. Dans cet article, nous supposons que G ne se scinde pas comme amalgame G = A * C B , ou HNN extension G = A * C au-dessus d’un groupe C qui stabilise un segment de longueur k dans τ ( k 2 ) ; si de plus τ ne contient pas de sous-arbre G -invariant, nous montrons que le nombre de sommets de τ / G est majoré par 12 k T , où T mesure la complexité d’une présentation de G .

Currently displaying 681 – 700 of 836