On the number of permutations arising from a problem in cell-biology.
Theorem A yields the condition under which the number of solutions of equation in a finite -group is divisible by (here is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow -subgroups).
Letwhere denotes the number of subgroups of all abelian groups whose order does not exceed and whose rank does not exceed , and is the error term. It is proved that
A subset of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, -groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general...
If is a transitive permutation group of degree with cyclic point-stabilizer, then the order of is at most .