Graphs and Finite Permutation Groups. II.
We consider circulant graphs having vertices, with prime. To any such graph we associate a certain number , that we call type of the graph. We prove that for the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.
Green functions of a stochastic operator on a free product of cyclic groups are explicitly evaluated as algebraic functions. The spectra are investigated by Morse theoretic argument.
The idempotent semirings for which Green’s -relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the -relation on the multiplicative reduct is the least lattice congruence.
Green's relations and their generalizations on semigroups are useful in studying regular semigroups and their generalizations. In this paper, we first give a brief survey of this topic. We then give some examples to illustrate some special properties of generalized Green's relations which are related to completely regular semigroups and abundant semigroups.