The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 259

Showing per page

Surface Projective Convexe de volume fini

Ludovic Marquis (2012)

Annales de l’institut Fourier

Une surface projective convexe est le quotient d’un ouvert proprement convexe Ω de l’espace projectif réel 2 ( ) par un sous-groupe discret Γ de SL 3 ( ) . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si Ω n’est pas un triangle alors Ω est strictement convexe, à bord 𝒞 1 et qu’une surface projective convexe S est de volume fini si et seulement si la surface duale est de volume fini.

Currently displaying 181 – 200 of 259