The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Mumford-Shah functional, introduced to study image segmentation
problems, is approximated in the sense of
vergence by a sequence of
integral functionals defined on piecewise affine functions.
Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.By generalization of Ehrenfest’s urn model, we obtain discrete approximations
to spatially one-dimensional time-fractional diffusion processes with
drift towards the origin. These discrete approximations can be interpreted
(a) as difference schemes for the relevant time-fractional partial differential
equation, (b) as random walk models. The relevant convergence questions as
well as the behaviour for time tending to infinity...
We study the relationship between the distortion function and normalized quasisymmetric mappings. This is part of a new method for solving the boundary values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on the extended complex plane.
This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution...
We give characterizations of the distributional derivatives , , of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given.
For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...
Currently displaying 61 –
75 of
75