The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
366
A study is made of a symmetric functional calculus for a system of bounded linear operators acting on a Banach space. Finite real linear combinations of the operators have real spectra, but the operators do not necessarily commute with each other. Analytic functions of the operators are formed by using functions taking their values in a Clifford algebra.
For n ∈ ℕ, L > 0, and p ≥ 1 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
, 1/paj ∈ ℂsuch that divides P(x). For n ∈ ℕ and L > 0 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
, , ,
such that divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that
for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially...
We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.
In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.
Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty.
Currently displaying 201 –
220 of
366