Displaying 301 – 320 of 365

Showing per page

Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues

Christophe Bavard (2005)

Bulletin de la Société Mathématique de France

Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).

Theory of coverings in the study of Riemann surfaces

Ewa Tyszkowska (2012)

Colloquium Mathematicae

For a G-covering Y → Y/G = X induced by a properly discontinuous action of a group G on a topological space Y, there is a natural action of π(X,x) on the set F of points in Y with nontrivial stabilizers in G. We study the covering of X obtained from the universal covering of X and the left action of π(X,x) on F. We find a formula for the number of fixed points of an element g ∈ G which is a generalization of Macbeath's formula applied to an automorphism of a Riemann surface. We give a new method...

Thin and fat sets for doubling measures in metric spaces

Tuomo Ojala, Tapio Rajala, Ville Suomala (2012)

Studia Mathematica

We consider sets in uniformly perfect metric spaces which are null for every doubling measure of the space or which have positive measure for all doubling measures. These sets are called thin and fat, respectively. In our main results, we give sufficient conditions for certain cut-out sets being thin or fat.

Thin sequences in the corona of H ∞

Dimcho Stankov, Tzonio Tzonev (2013)

Open Mathematics

In this paper we consider several conditions for sequences of points in M(H ∞) and establish relations between them. We show that every interpolating sequence for QA of nontrivial points in the corona M ( H ) 𝔻 of H ∞ is a thin sequence for H ∞, which satisfies an additional topological condition. The discrete sequences in the Shilov boundary of H ∞ necessarily satisfy the same condition.

Topological and algebraic genericity of divergence and universality

Frédéric Bayart (2005)

Studia Mathematica

We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.

Currently displaying 301 – 320 of 365