Displaying 781 – 800 of 6204

Showing per page

Boundary behaviour of harmonic functions in a half-space and brownian motion

D. L. Burkholder, Richard F. Gundy (1973)

Annales de l'institut Fourier

Let u be harmonic in the half-space R + n + 1 , n 2 . We show that u can have a fine limit at almost every point of the unit cubs in R n = R + n + 1 but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.In R + 2 it is known that the Hardy classes H p , 0 < p < , may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability...

Boundary functions in L 2 H ( 𝔹 n )

Piotr Kot (2007)

Czechoslovak Mathematical Journal

We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function u which is lower semi-continuous on 𝔹 n we give necessary and sufficient conditions in order that there exists a holomorphic function f 𝕆 ( 𝔹 n ) such that u ( z ) = | λ | < 1 f ( λ z ) 2 d 𝔏 2 ( λ ) .

Boundary functions on a bounded balanced domain

Piotr Kot (2009)

Czechoslovak Mathematical Journal

We solve the following Dirichlet problem on the bounded balanced domain Ω with some additional properties: For p > 0 and a positive lower semi-continuous function u on Ω with u ( z ) = u ( λ z ) for | λ | = 1 , z Ω we construct a holomorphic function f 𝕆 ( Ω ) such that u ( z ) = 𝔻 z | f | p d 𝔏 𝔻 z 2 for z Ω , where 𝔻 = { λ | λ | < 1 } .

Boundary subordination

Adam Lecko (2012)

Annales Polonici Mathematici

We study the idea of the boundary subordination of two analytic functions. Some basic properties of the boundary subordination are discussed. Applications to classes of univalent functions referring to a boundary point are demonstrated.

Currently displaying 781 – 800 of 6204