Displaying 141 – 160 of 250

Showing per page

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales UMCS, Mathematica

Let || · || be the uniform norm in the unit disk. We study the quantities Mn (α) := inf (||zP(z) + α|| - α) where the infimum is taken over all polynomials P of degree n - 1 with ||P(z)|| = 1 and α > 0. In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that infα>0Mn (α) = 1/n. We find the exact values of Mn (α) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Estimates in the Hardy-Sobolev space of the annulus and stability result

Imed Feki (2013)

Czechoslovak Mathematical Journal

The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space H k , ; k * of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces...

Estimation of Green's function on piecewise Dini-smooth bounded Jordan domains

Mohamed Amine Ben Boubaker, Mohamed Selmi (2013)

Colloquium Mathematicae

We establish inequalities for Green functions on general bounded piecewise Dini-smooth Jordan domains in ℝ². This enables us to prove a new version of the 3G Theorem which generalizes its previous version given in [M. Selmi, Potential Anal. 13 (2000)]. Using these results, we give a comparison theorem for the Green kernel of Δ and the Green kernel of Δ - μ, where μ is a nonnegative and exact Radon measure.

Currently displaying 141 – 160 of 250