Displaying 1321 – 1340 of 1782

Showing per page

Stability and Continuity of Functions of Least Gradient

H. Hakkarainen, R. Korte, P. Lahti, N. Shanmugalingam (2015)

Analysis and Geometry in Metric Spaces

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

Stability results for Harnack inequalities

Alexander Grigor'yan, Laurent Saloff-Coste (2005)

Annales de l’institut Fourier

We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically...

Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains

Tadie (1999)

Applications of Mathematics

In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder ( r d ) where ( r , θ , z ) denotes the cylindrical co-ordinates in 3 is considered. The motion is with swirl (i.e. the θ -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( f q = 0 in (f)) in the whole space, as the flux constant k tends to , 1) dist ( 0 z , A ) = O ( k 1 / 2 ) ; diam A = O ( exp ( - c 0 k 3 / 2 ) ) ; 2) ( k 1 / 2 Ψ ) k converges to a vortex cylinder U m (see...

Strict fine maxima.

Fitzsimmons, P.J. (2000)

Electronic Communications in Probability [electronic only]

Strutture subriemanniane in alcuni problemi di Analisi

Ermanno Lanconelli (2005)

Bollettino dell'Unione Matematica Italiana

Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.

Su alcune questioni connesse con il problema di derivata obliqua regolare per le funzioni armoniche

Enrico Magenes (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

— Vengono riconsiderati il problema di derivata obliqua regolare e quello misto di Dirichlet-derivata obliqua regolare per le funzioni armoniche in un dominio di R 3 e le questioni di completezza hilbertiana connesse già studiate in un precedente lavoro e viene data una nuova dimostrazione di un teorema di unicità.

Subduals and tensor products of spaces of harmonic functions

Ian Reay (1974)

Annales de l'institut Fourier

Working in the axiomatic potential theory of M. Brelot, a description of the subdual of the vector space generated by the cone of positive harmonic functions on a harmonic space, Ω , is given. Under certain hypothesis this is seen to be a function space on the Martin boundary of Ω . Some ancillary results are proved. Next, it is shown, using this result and the theory of tensor products of simplexes, that the cone of positive separately harmonic functions is the tensor product of the cones of positive...

Subharmonic functions in sub-Riemannian settings

Andrea Bonfiglioli, Ermanno Lanconelli (2013)

Journal of the European Mathematical Society

In this paper we furnish mean value characterizations for subharmonic functions related to linear second order partial differential operators with nonnegative characteristic form, possessing a well-behaved fundamental solution Γ . These characterizations are based on suitable average operators on the level sets of Γ . Asymptotic characterizations are also considered, extending classical results of Blaschke, Privaloff, Radó, Beckenbach, Reade and Saks. We analyze as well the notion of subharmonic function...

Currently displaying 1321 – 1340 of 1782