Sur certaines questions qui se rattachent au problème de Dirichlet
Dans le cadre axiomatique de M. Brelot et R.-M. Hervé (cas y compris l’axiome de domination) on montre que, pour tout domaine par rapport à la topologie fine et pour tout point , la fonction (“fine ”) de Green pour à pôle est caractérisée (à un facteur constant près) comme un potentiel fin relatif à qui est finement harmonique dans .
Soit une fonction harmonique définie hors d’un compact d’un espace harmonique de Brelot sans potentiel , on définit directement, c’est-à-dire sans les théorèmes de Nakaï, le flux de relativement à une fonction harmonique fixée , définie hors d’un compact. On donne ensuite une construction de la mesure intervenant dans les théorèmes de Nakaï, sans utiliser la théorie de Riesz-Schauder.
On montre qu’une forme de Dirichlet est décomposable de manière unique en deux formes intégrales et une forme locale. On indique l’expression de cette partie locale dans un cas régulier.
Using rather elementary and direct methods, we first recover and add on some results of Aikawa-Hirata-Lundh about the Martin boundary of a John domain. In particular we answer a question raised by these authors. Some applications are given and the case of more general second order elliptic operators is also investigated. In the last parts of the paper two potential theoretic results are shown in the framework of uniform domains or the framework of hyperbolic manifolds.
Nous caractérisons les opérateurs potentiels des processus de Markov récurrents sur un espace compact, au moyen du principe semi-complet du maximum.
Pour un noyau de convolution injectif , il existe un seul cône convexe maximum formé par des diviseurs de et contenant . Pour un noyau de convolution , si et seulement si est un noyau de convolution de Hunt. En l’appliquant, on obtient l’unicité de la classe fractionnaire.