The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 261 –
280 of
608
Let be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology of the algebra of differential operators on a formal neighbourhood of a...
A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the 'non-increasing' property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a 'non-compact' family of proper correspondences.
We give a Schwarz lemma on complex ellipsoids.
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.
We show that for a polynomial mapping the Łojasiewicz exponent of F is attained on the set .
Let be the open unit ball of a Banach space , and let be a holomorphic map with . In this paper, we discuss a condition whereby is a linear isometry on .
Here we show that a Kupka component of a codimension 1 singular foliation of with not a square is a complete intersection. The result implies the existence of a meromorphic first integral of .
Currently displaying 261 –
280 of
608