Displaying 261 – 280 of 301

Showing per page

Extension and restriction of holomorphic functions

Klas Diederich, Emmanuel Mazzilli (1997)

Annales de l'institut Fourier

Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds D ' of pseudoconvex domains D to all of D even in quite simple situations; The spaces A p ( D ' ) : = 𝒪 ( D ' ) L p ( D ' ) are, in general, not at all preserved. Also the image of the Hilbert space A 2 ( D ) under the restriction to D ' can have a very strange structure.

Extension dans des classes de Hardy de fonctions holomorphes et estimations de type «mesures de Carleson» pour l’équation ¯

Anne Cumenge (1983)

Annales de l'institut Fourier

Nous montrons qu’une fonction holomorphe sur un sous-ensemble analytique transverse V d’un domaine D borné strictement pseudoconvexe de C n admet une extension dans H p ( D ) ( 1 p < + ) si et seulement si elle vérifie une condition de type L p à poids sur V  ; la démonstration est en partie basée sur la résolution de l’équation avec estimations de type “mesures de Carleson”.

Extension d'homéomorphismes CR entre variétés polynômialement rigides.

Patrick Lahondès (2002)

Publicacions Matemàtiques

Let f : M → M' be a CR homeomorphism between two minimal, rigid polynomial varieties of Cn without holomorphic curves. We show that f extends biholomorphically in a neighborhood of M if f extends holomorphically in a neighborghood of a point p0 ∈ M or if f is of class C1. In the other hand, in case M and M' are two algebraic hypersurfaces, we obtain the extension without supplementary conditions.

Extension et division dans les variétés à croisements normaux.

Abderrabi Maati, Emmanuel Mazzilli (2001)

Publicacions Matemàtiques

Let D be a bounded strictly pseudoconvex domain with smooth boundary and f = (f1, ..., fp) (fi ∈ Hol(D)) a complete intersection with normal crossing. In this paper we study an extension problem in L∞-norm for holomorphic functions defined on f-1(0) ∩ D and a decomposition formula g = ∑i=1p figi for holomorphic functions g ∈ I(f1, ..., fp)(D) in Lipschitz spaces. We stress that for the two problems the classical theorem cannot be applied because f-1(0) has singularities on the boundary ∂D. This...

Extension of CR functions to «wedge type» domains

Andrea D'Agnolo, Piero D'Ancona, Giuseppe Zampieri (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X be a complex manifold, S a generic submanifold of X R , the real underlying manifold to X . Let Ω be an open subset of S with Ω analytic, Y a complexification of S . We first recall the notion of Ω -tuboid of X and of Y and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for ¯ b to the extendability of C R functions on Ω to Ω -tuboids of X . Next, if X has complex dimension 2, we give results on extension...

Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial

Ludovic Delabarre (2013)

Bulletin de la Société Mathématique de France

Given a multivariate polynomial h X 1 , , X n with integral coefficients verifying an hypothesis of analytic regularity (and satisfying h ( 0 ) = 1 ), we determine the maximal domain of meromorphy of the Euler product p prime h p - s 1 , , p - s n and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.

Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric

Ngaiming Mok (2012)

Journal of the European Mathematical Society

We study the extension problem for germs of holomorphic isometries f : ( D ; x 0 ) ( Ω ; f ( x 0 ) ) up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics d s D 2 on D and d s Ω 2 on Ω . Our main focus is on boundary extension for pairs of bounded domains ( D , Ω ) such that the Bergman kernel K D ( z , w ) extends meromorphically in ( z , w ¯ ) to a neighborhood of D ¯ × D , and such that the analogous statement holds true for the Bergman kernel K Ω ( ς , ξ ) on Ω . Assuming that ( D ; d s D 2 ) and ( Ω ; d s Ω 2 ) are complete Kähler manifolds, we prove that the germ...

Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)

Jean-Pierre Rosay (2007)

Annales de l’institut Fourier

Holomorphic bundles, with fiber n , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.

Extension of holomorphic maps between real hypersurfaces of different dimension

Rasul Shafikov, Kausha Verma (2007)

Annales de l’institut Fourier

In this paper we extend the results on analytic continuation of germs of holomorphic mappings from a real analytic hypersurface to a real algebraic hypersurface to the case when the target hypersurface is of higher dimension than the source. More precisely, we prove the following: Let M be a connected smooth real analytic minimal hypersurface in C n , M be a compact strictly pseudoconvex real algebraic hypersurface in C N , 1 < n N . Suppose that f is a germ of a holomorphic map at a point p in M and f ( M ) is in...

Currently displaying 261 – 280 of 301