Extending proper holomorphic mappings of positive codimension.
We extend a result of M. Tamm as follows:Let , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions . Then there exists such that for all , if is in a neighborhood of , then is real analytic in a neighborhood of .
Let be compact, convex sets in with and let be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of in the space of all -functions on extends to a zero solution in resp. in . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of in and in terms of fundamental solutions for with lacunas.
The purpose of this article is twofold. The first is to show a criterion for the normality of holomorphic mappings into Abelian varieties; an extension theorem for such mappings is also given. The second is to study the convergence of meromorphic mappings into complex projective varieties. We introduce the concept of d-convergence and give a criterion of d-normality of families of meromorphic mappings.
Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds of pseudoconvex domains to all of even in quite simple situations; The spaces are, in general, not at all preserved. Also the image of the Hilbert space under the restriction to can have a very strange structure.
Nous montrons qu’une fonction holomorphe sur un sous-ensemble analytique transverse d’un domaine borné strictement pseudoconvexe de admet une extension dans si et seulement si elle vérifie une condition de type à poids sur ; la démonstration est en partie basée sur la résolution de l’équation avec estimations de type “mesures de Carleson”.
Let f : M → M' be a CR homeomorphism between two minimal, rigid polynomial varieties of Cn without holomorphic curves. We show that f extends biholomorphically in a neighborhood of M if f extends holomorphically in a neighborghood of a point p0 ∈ M or if f is of class C1. In the other hand, in case M and M' are two algebraic hypersurfaces, we obtain the extension without supplementary conditions.
Let D be a bounded strictly pseudoconvex domain with smooth boundary and f = (f1, ..., fp) (fi ∈ Hol(D)) a complete intersection with normal crossing. In this paper we study an extension problem in L∞-norm for holomorphic functions defined on f-1(0) ∩ D and a decomposition formula g = ∑i=1p figi for holomorphic functions g ∈ I(f1, ..., fp)(D) in Lipschitz spaces. We stress that for the two problems the classical theorem cannot be applied because f-1(0) has singularities on the boundary ∂D. This...
We study the problem of extending functions from linear affine subvarieties for the Bergman scale of spaces on convex finite type domains. Our results solve the problem for H¹(D). For other Bergman spaces the result is ϵ-optimal.
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...