The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

Conical Fourier-Borel transformations for harmonic functionals on the Lie ball

Mitsuo Morimoto, Keiko Fujita (1996)

Banach Center Publications

Let L(z) be the Lie norm on ˜ = n + 1 and L*(z) the dual Lie norm. We denote by Δ ( B ˜ ( R ) ) the space of complex harmonic functions on the open Lie ball B ˜ ( R ) and by E x p Δ ( ˜ ; ( A , L * ) ) the space of entire harmonic functions of exponential type (A,L*). A continuous linear functional on these spaces will be called a harmonic functional or an entire harmonic functional. We shall study the conical Fourier-Borel transformations on the spaces of harmonic functionals or entire harmonic functionals.

Corrigendum to: Holomorphic Morse inequalities on manifolds with boundary

Robert Berman (2008)

Annales de l’institut Fourier

A statement in the paper “Holomorphic Morse inequalities on manifolds with boundary” saying that the holomorphic Morse inequalities for an hermitian line bundle L over X are sharp as long as L extends as semi-positive bundle over a Stein-filling is corrected, by adding certain assumptions. A more general situation is also treated.

Currently displaying 1 – 13 of 13

Page 1