The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a complex space of dimension , not necessarily reduced, whose cohomology groups are of finite dimension (as complex vector spaces). We show that is Stein (resp., -convex) if, and only if, is holomorphically spreadable (resp., is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for -convexity.
We study hypersurfaces of complex projective manifolds which are invariant by a foliation, or more generally which are solutions to a Pfaff equation. We bound their degree using classical results on logarithmic forms.
Let be a coherent subsheaf of a locally free sheaf and suppose that has pure codimension. Starting with a residue current obtained from a locally free resolution of we construct a vector-valued Coleff-Herrera current with support on the variety associated to such that is in if and only if . Such a current can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed. By a construction...
A compact complex space is called complex-symmetric with respect to a subgroup of the group , if each point of is isolated fixed point of an involutive automorphism of . It follows that is almost -homogeneous. After some examples we classify normal complex-symmetric varieties with reductive. It turns out that is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using...
Currently displaying 1 –
20 of
98