The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 171

Showing per page

A cohomological Steinness criterion for holomorphically spreadable complex spaces

Viorel Vâjâitu (2010)

Czechoslovak Mathematical Journal

Let X be a complex space of dimension n , not necessarily reduced, whose cohomology groups H 1 ( X , 𝒪 ) , ... , H n - 1 ( X , 𝒪 ) are of finite dimension (as complex vector spaces). We show that X is Stein (resp., 1 -convex) if, and only if, X is holomorphically spreadable (resp., X is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for 1 -convexity.

Currently displaying 1 – 20 of 171

Page 1 Next