Displaying 61 – 80 of 578

Showing per page

Periodic BVP with φ -Laplacian and impulses

Vladimír Polášek (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper deals with the impulsive boundary value problem d d t [ φ ( y ' ( t ) ) ] = f ( t , y ( t ) , y ' ( t ) ) , y ( 0 ) = y ( T ) , y ' ( 0 ) = y ' ( T ) , y ( t i + ) = J i ( y ( t i ) ) , y ' ( t i + ) = M i ( y ' ( t i ) ) , i = 1 , ... m . The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.

Periodic dynamics in a model of immune system

Marek Bodnar, Urszula Foryś (2000)

Applicationes Mathematicae

The aim of this paper is to study periodic solutions of Marchuk's model, i.e. the system of ordinary differential equations with time delay describing the immune reactions. The Hopf bifurcation theorem is used to show the existence of a periodic solution for some values of the delay. Periodic dynamics caused by periodic immune reactivity or periodic initial data functions are compared. Autocorrelation functions are used to check the periodicity or quasiperiodicity of behaviour.

Periodic integrals and tautological systems

Bong H. Lian, Ruifang Song, Shing-Tung Yau (2013)

Journal of the European Mathematical Society

We study period integrals of CY hypersurfaces in a partial flag variety. We construct a regular holonomic system of differential equations which govern the period integrals. By means of representation theory, a set of generators of the system can be described explicitly. The results are also generalized to CY complete intersections. The construction of these new systems of differential equations has lead us to the notion of a tautological system.

Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity

Zhen Wang, Wei Sun, Zhouchao Wei, Shanwen Zhang (2017)

Kybernetika

Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity...

Periodic problems and problems with discontinuities for nonlinear parabolic equations

Tiziana Cardinali, Nikolaos S. Papageorgiou (2000)

Czechoslovak Mathematical Journal

In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that...

Periodic problems for ODEs via multivalued Poincaré operators

Lech Górniewicz (1998)

Archivum Mathematicum

We shall consider periodic problems for ordinary differential equations of the form x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x ( a ) , where f : [ 0 , a ] × R n R n satisfies suitable assumptions. To study the above problem we shall follow an approach based on the topological degree theory. Roughly speaking, if on some ball of R n , the topological degree of, associated to (), multivalued Poincaré operator P turns out to be different from zero, then problem () has solutions. Next by using the multivalued version of the classical Liapunov-Krasnoselskǐ guiding potential...

Periodic singular problem with quasilinear differential operator

Irena Rachůnková, Milan Tvrdý (2006)

Mathematica Bohemica

We study the singular periodic boundary value problem of the form φ ( u ' ) ' + h ( u ) u ' = g ( u ) + e ( t ) , u ( 0 ) = u ( T ) , u ' ( 0 ) = u ' ( T ) , where φ is an increasing and odd homeomorphism such that φ ( ) = , h C [ 0 , ...

Currently displaying 61 – 80 of 578