Periodic solution of second-order Hamiltonian systems with a change sign potential on time scales.
In this paper, we are concerned with a delayed multispecies competition predator-prey dynamic system with Beddington-DeAngelis functional response. Some sufficient conditions which guarantee the existence of a positive periodic solution for the system are obtained by applying the Mawhin coincidence theory. The interesting thing is that the result is related to the delays, which is different from the corresponding ones known from literature (the results are delay-independent).
In this paper, we study the existence of periodic solutions to a class of functional differential system. By using Schauder's fixed point theorem, we show that the system has aperiodic solution under given conditions. Finally, four examples are given to demonstrate the validity of our main results.
We investigate the existence of infinitely many periodic solutions for the -Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super- growth and asymptotic- growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case .
By means of the Krasnoselskii fixed piont theorem, periodic solutions are found for a neutral type delay differential system of the form
We consider first order periodic differential inclusions in . The presence of a subdifferential term incorporates in our framework differential variational inequalities in . We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.