The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
103
Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.
We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued
Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with
one-dimensional Schrödinger operators on a compact interval [0, R] with
separated boundary conditions at 0 and R. Most of our results are
formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in
terms of the resolvent...
In this article, we consider the operator defined by the differential expression
in , where is a complex valued function. Discussing the spectrum, we prove that has a finite number of eigenvalues and spectral singularities, if the condition
holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.
For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).
The systems of differential equations whose solutions exactly coincide with Bethe ansatz solutions for generalized Gaudin models are constructed. These equations are called the generalized spectral Riccati equations, because the simplest equation of this class has a standard Riccatian form. The general form of these equations is , i=1,..., r, where denote some homogeneous polynomials of degrees constructed from functional variables and their derivatives. It is assumed that . The problem...
In an earlier paper [5] a method for eigenvalue inclussion using a Gerschgorin type theory originating from Donnelly [2] was applied to the plane Orr-Sommerfeld problem in the case of a pure Poiseuile flow. In this paper the same method will be used to deal Poiseuile and Couette flow. Potter [6] has treated this case before with an approximative method.
Currently displaying 21 –
40 of
103