Displaying 581 – 600 of 1045

Showing per page

The problem of dynamic cavitation in nonlinear elasticity

Jan Giesselmann, Alexey Miroshnikov, Athanasios E. Tzavaras (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.

The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation

Juan Luis Vázquez (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.

The p-system II: The vacuum

Robin Young (2003)

Banach Center Publications

We consider the equations of isentropic gas dynamics in Lagrangian coordinates. We are interested in global interactions of large waves, and their relation to global solvability and well-posedness for large data. One of the main difficulties in this program is the possible occurrence of a vacuum, in which the specific volume is infinite. In this paper we show that the vacuum cannot be generated in finite time. More precisely, if the vacuum is present for some positive time, then it must be present...

The quasi-canonical solution operator to ¯ restricted to the Fock-space

Georg Schneider (2005)

Czechoslovak Mathematical Journal

We consider the solution operator S μ , ( p , q ) L 2 ( μ ) ( p , q ) to the ¯ -operator restricted to forms with coefficients in μ = f f is entire and n | f ( z ) | 2 d μ ( z ) < . Here μ , ( p , q ) denotes ( p , q ) -forms with coefficients in μ , L 2 ( μ ) is the corresponding L 2 -space and μ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula S to ¯ . This solution operator will have the property S v ( p , q ) v ( p , q + 1 ) . As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators...

The quasilinear parabolic kirchhoff equation

Łukasz Dawidowski (2017)

Open Mathematics

In this paper the existence of solution of a quasilinear generalized Kirchhoff equation with initial – boundary conditions of Dirichlet type will be studied using the Leray – Schauder principle.

The quasineutral limit problem in semiconductors sciences

Ling Hsiao (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.

The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave packet approach

François Castella (2004)

Journées Équations aux dérivées partielles

We consider the high-frequency Helmholtz equation with a given source term, and a small absorption parameter α &gt; 0 . The high-frequency (or: semi-classical) parameter is ε &gt; 0 . We let ε and α go to zero simultaneously. We assume that the zero energy is non-trapping for the underlying classical flow. We also assume that the classical trajectories starting from the origin satisfy a transversality condition, a generic assumption.Under these assumptions, we prove that the solution u ε radiates in the outgoing...

The radiation field is a Fourier integral operator

Antônio Sá Barreto, Jared Wunsch (2005)

Annales de l’institut Fourier

We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic manifold. The underlying canonical relation is associated to a ``sojourn time'' or ``Busemann function'' for geodesics. As a consequence we obtain some information about the high frequency behavior of the scattering...

Currently displaying 581 – 600 of 1045