The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
373
We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic
dumbbell models that arise from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The class of models involves the unsteady
incompressible Navier–Stokes equations in a bounded domain
Ω ⊂ ℝd, d = 2 or 3, for
the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions
of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and
the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...
In this paper we study a model problem describing the movement of
a glacier under Glen's flow law and investigated by Colinge and
Rappaz [Colinge and Rappaz, ESAIM: M2AN33 (1999) 395–406]. We establish error estimates for finite
element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis29 (1992) 769–780] and
Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis33
(1996) 98–106] and give an analysis of the
convergence of the successive approximations used in [Colinge and...
In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.
In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.
A new finite element derivative recovery technique is proposed by using the polynomial interpolation method. We show that the recovered derivatives possess superconvergence on the recovery domain and ultraconvergence at the interior mesh points for finite element approximations to elliptic boundary problems. Compared with the well-known Z-Z patch recovery technique, the advantage of our method is that it gives an explicit recovery formula and possesses the ultraconvergence for the odd-order finite...
We consider the flow of a viscous incompressible fluid through a rigid
homogeneous porous medium. The permeability of the medium depends
on the pressure, so that the model is nonlinear. We propose a finite
element discretization of this problem and, in the case where the
dependence on the pressure is bounded from above and below, we prove
its convergence to the solution and propose an algorithm to solve
the discrete system. In the case where the dependence
on the pressure is exponential, we propose...
We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.
Currently displaying 81 –
100 of
373