Displaying 1021 – 1040 of 1682

Showing per page

Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire

André de Laire, Philippe Gravejat (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].

Stabilité et asymptotique en temps grand de solutions globales des équations de Navier-Stokes

Isabelle Gallagher, Dragoş Iftimie, Fabrice Planchon (2002)

Journées équations aux dérivées partielles

We study a priori global strong solutions of the incompressible Navier-Stokes equations in three space dimensions. We prove that they behave for large times like small solutions, and in particular they decay to zero as time goes to infinity. Using that result, we prove a stability theorem showing that the set of initial data generating global solutions is open.

Stabilité L 1 d’ondes progressives de lois de conservation scalaires

Denis Serre (1998/1999)

Séminaire Équations aux dérivées partielles

A powerfull method has been developped in [2] for the study of L 1 -stability of travelling waves in conservation laws or more generally in equations which display L 1 -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations....

Stability analysis for acoustic waveguides. Part 3: impedance boundary conditions

Leszek Demkowicz, Jay Gopalakrishnan, Norbert Heuer (2024)

Applications of Mathematics

A model two-dimensional acoustic waveguide with lateral impedance boundary conditions (and outgoing boundary conditions at the waveguide outlet) is considered. The governing operator is proved to be bounded below with a stability constant inversely proportional to the length of the waveguide. The presence of impedance boundary conditions leads to a non self-adjoint operator which considerably complicates the analysis. The goal of this paper is to elucidate these complications and tools that are...

Stability analysis for neutral-type impulsive neural networks with delays

Bo Du, Yurong Liu, Dan Cao (2017)

Kybernetika

By using linear matrix inequality (LMI) approach and Lyapunov functional method, we obtain some new sufficient conditions ensuring global asymptotic stability and global exponential stability of a generalized neutral-type impulsive neural networks with delays. A simulation example is provided to demonstrate the usefulness of the main results obtained. The main contribution in this paper is that a new neutral-type impulsive neural networks with variable delays is studied by constructing a novel Lyapunov...

Stability analysis of phase boundary motion by surface diffusion with triple junction

Harald Garcke, Kazuo Ito, Yoshihito Kohsaka (2009)

Banach Center Publications

The linearized stability of stationary solutions for the surface diffusion flow with a triple junction is studied. We derive the second variation of the energy functional under the constraint that the enclosed areas are preserved and show a linearized stability criterion with the help of the H - 1 -gradient flow structure of the evolution problem and the analysis of eigenvalues of a corresponding differential operator.

Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation

Cyril Agut, Julien Diaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Currently displaying 1021 – 1040 of 1682