Stabilization of a wave-wave system.
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter and study its asymptotic behavior for large, as . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter . In order for this to be true the damping mechanism has to have the appropriate scale with respect to . In the limit as we obtain damped Berger–Timoshenko beam models...
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε → 0. Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε. In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko...
This paper presents a stabilization technique for approximating transport equations. The key idea consists in introducing an artificial diffusion based on a two-level decomposition of the approximation space. The technique is proved to have stability and convergence properties that are similar to that of the streamline diffusion method.
We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.
We consider abstract second order evolution equations with unbounded feedback with delay. Existence results are obtained under some realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions : typically is equal to on , equal to on and is -periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability. In both cases,...
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions a: typically a is equal to 1 on (0,T), equal to 0 on (T, qT) and is qT-periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability....