Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions.
We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.
We consider abstract second order evolution equations with unbounded feedback with delay. Existence results are obtained under some realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions : typically is equal to on , equal to on and is -periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability. In both cases,...
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions a: typically a is equal to 1 on (0,T), equal to 0 on (T, qT) and is qT-periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability....
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a C0 group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hilbert...