Displaying 1161 – 1180 of 1682

Showing per page

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008/2009)

Séminaire Équations aux dérivées partielles

This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension

Malte Braack, Andreas Prohl (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The isothermal Navier–Stokes–Korteweg system is used to model dynamics of a compressible fluid exhibiting phase transitions between a liquid and a vapor phase in the presence of capillarity effects close to phase boundaries. Standard numerical discretizations are known to violate discrete versions of inherent energy inequalities, thus leading to spurious dynamics of computed solutions close to static equilibria (e.g., parasitic currents). In this work, we propose a time-implicit discretization of...

Stable solutions of Δ u = f ( u ) in N

Louis Dupaigne, Alberto Farina (2010)

Journal of the European Mathematical Society

Several Liouville-type theorems are presented for stable solutions of the equation - Δ u = f ( u ) in N , where f > 0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.

Stable upwind schemes for the magnetic induction equation

Franz G. Fuchs, Kenneth H. Karlsen, Siddharta Mishra, Nils H. Risebro (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the magnetic induction equation for the evolution of a magnetic field in a plasma where the velocity is given. The aim is to design a numerical scheme which also handles the divergence constraint in a suitable manner. We design and analyze an upwind scheme based on the symmetrized version of the equations in the non-conservative form. The scheme is shown to converge to a weak solution of the equations. Furthermore, the discrete divergence produced by the scheme is shown to be...

Currently displaying 1161 – 1180 of 1682