Stability of travelling waves in a model for conical flames in two space dimensions
By means of the fixed-point methods and the properties of the -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where is a positive measure. A numerical example is given to illustrate our main results.
In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval with a tolerance level . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant....
The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered...
We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically...
This article is devoted to the study of a perturbation with a viscosity term in an elliptic equation involving the p-Laplacian operator and related to the best contant problem in Sobolev inequalities in the critical case. We prove first that this problem, together with the equation, is stable under this perturbation, assuming some conditions on the datas. In the next section, we show that the zero solution is strongly isolated in some sense, among the space of the solutions. Actually, we end the...
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter , the Froude number proportional to and when the fluid occupies large domain with spatial obstacle of rough surface varying when . The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral...
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control...