Displaying 1241 – 1260 of 1682

Showing per page

Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions

Mireille Bossy, Mamadou Cissé, Denis Talay (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.

Stochastic Taylor expansions and heat kernel asymptotics

Fabrice Baudoin (2012)

ESAIM: Probability and Statistics

These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.

Stokes equations in asymptotically flat layers

Helmut Abels (2005)

Banach Center Publications

We study the generalized Stokes resolvent equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω = n - 1 × ( - 1 , 1 ) . Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. We discuss the results on unique solvability of the generalized Stokes resolvent equations as well as the existence of a bounded H -calculus for the associated Stokes operator and some...

Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem

Stanislav Nikolaevich Antontsev, Jesús Ildefonso Díaz, Hermenegildo Borges de Oliveira (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics literature, we start by establishing some results about existence and uniqueness of weak solutions. Then, we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by...

Strangely sweeping one-dimensional diffusion

Ryszard Rudnicki (1993)

Annales Polonici Mathematici

Let X(t) be a diffusion process satisfying the stochastic differential equation dX(t) = a(X(t))dW(t) + b(X(t))dt. We analyse the asymptotic behaviour of p(t) = ProbX(t) ≥ 0 as t → ∞ and construct an equation such that l i m s u p t t - 1 0 t p ( s ) d s = 1 and l i m i n f t t - 1 0 t p ( s ) d s = 0 .

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and then sum over...

Strichartz estimates for water waves

Thomas Alazard, Nicolas Burq, Claude Zuily (2011)

Annales scientifiques de l'École Normale Supérieure

In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ( η = 0 , ψ = 0 )).

Strichartz inequality for orthonormal functions

Rupert Frank, Mathieu Lewin, Elliott H. Lieb, Robert Seiringer (2014)

Journal of the European Mathematical Society

We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we show the existence of the wave operator in Schatten spaces.

Strichartz Type Estimates for Oscillatory Problems for Semilinear Wave Equation

Di Pomponio, Stefania (2000)

Serdica Mathematical Journal

The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.We treat the oscillatory problem for semilinear wave equation. The oscillatory initial data are of the type u(0, x) = h(x) + ε^(σ+1) * e^(il(x)/ε) * b0 (ε, x) ∂t u(0, x) = ε^σ * e^(il(x)/ε) * b1(ε, x). By using suitable variants of Strichartz estimate we extend the results from [6] on a priori estimates of the approximations of geometric optics.The main improvement...

Currently displaying 1241 – 1260 of 1682