Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
We prove wellposedness of the Cauchy problem for the nonlinear Schrödinger equation for any defocusing power nonlinearity on a domain of the plane with Dirichlet boundary conditions. The main argument is based on a generalized Strichartz inequality on manifolds with Lipschitz metric.
We prove Strichartz inequalities for the solution of the Schrödinger equation related to the full Laplacian on the Heisenberg group. A key point consists in estimating the decay in time of the norm of the free solution; this requires a careful analysis due also to the non-homogeneous nature of the full Laplacian.
We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we show the existence of the wave operator in Schatten spaces.
The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.We treat the oscillatory problem for semilinear wave equation. The oscillatory initial data are of the type u(0, x) = h(x) + ε^(σ+1) * e^(il(x)/ε) * b0 (ε, x) ∂t u(0, x) = ε^σ * e^(il(x)/ε) * b1(ε, x). By using suitable variants of Strichartz estimate we extend the results from [6] on a priori estimates of the approximations of geometric optics.The main improvement...
We use a new approach to prove the strong asymptotic stability for n-dimensional thermoelasticity systems. Unlike the earlier works, our method can be applied in the case of feedbacks with no growth assumption at the origin, and when LaSalle's invariance principle cannot be applied due to the lack of compactness.
The notion of “strong boundary values” was introduced by the authors in the local theory of hyperfunction boundary values (boundary values of functions with unrestricted growth, not necessarily solutions of a PDE). In this paper two points are clarified, at least in the global setting (compact boundaries): independence with respect to the defining function that defines the boundary, and the spaces of test functions to be used. The proofs rely crucially on simple results in spectral asymptotics.
Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.
We consider the Neumann Laplacian with constant magnetic field on a regular domain in . Let be the strength of the magnetic field and let be the first eigenvalue of this Laplacian. It is proved that is monotone increasing for large . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.