Displaying 1261 – 1280 of 1682

Showing per page

Strong asymptotic stability for n-dimensional thermoelasticity systems

Mohammed Aassila (1998)

Colloquium Mathematicae

We use a new approach to prove the strong asymptotic stability for n-dimensional thermoelasticity systems. Unlike the earlier works, our method can be applied in the case of feedbacks with no growth assumption at the origin, and when LaSalle's invariance principle cannot be applied due to the lack of compactness.

Strong boundary values : independence of the defining function and spaces of test functions

Jean-Pierre Rosay, Edgar Lee Stout (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The notion of “strong boundary values” was introduced by the authors in the local theory of hyperfunction boundary values (boundary values of functions with unrestricted growth, not necessarily solutions of a PDE). In this paper two points are clarified, at least in the global setting (compact boundaries): independence with respect to the defining function that defines the boundary, and the spaces of test functions to be used. The proofs rely crucially on simple results in spectral asymptotics.

Strong convergence estimates for pseudospectral methods

Wilhelm Heinrichs (1992)

Applications of Mathematics

Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.

Strong diamagnetism for general domains and application

Soeren Fournais, Bernard Helffer (2007)

Annales de l’institut Fourier

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 ( B ) be the first eigenvalue of this Laplacian. It is proved that B λ 1 ( B ) is monotone increasing for large B . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

Currently displaying 1261 – 1280 of 1682