Displaying 121 – 140 of 147

Showing per page

Quelques propriétés du faisceau de fonctions harmoniques associé à un opérateur elliptique dégénéré

Rose-Marie Hervé (1975)

Annales de l'institut Fourier

Cet article complète les résultats obtenus par J.-M. Bony et par l’auteur. On montre d’abord qu’on peut définir les fonctions harmoniques adjointes au faisceau donné, et qu’elles coïncident avec les solutions de l’équation adjointe. Puis, dans un ouvert assez régulier, la solution du problème de Dirichlet dans le cadre axiomatique est comparée à la solution au sens variationnel construite par M. Derridj.

Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle

Clément Mouhot (2007/2008)

Séminaire Équations aux dérivées partielles

Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.

Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions

Diabate Nabongo, Théodore K. Boni (2008)

Commentationes Mathematicae Universitatis Carolinae

This paper concerns the study of the numerical approximation for the following boundary value problem: u t ( x , t ) - u x x ( x , t ) = - u - p ( x , t ) , 0 < x < 1 , t > 0 , u x ( 0 , t ) = 0 , u ( 1 , t ) = 1 , t > 0 , u ( x , 0 ) = u 0 ( x ) > 0 , 0 x 1 , where p > 0 . We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.

Quenching time of some nonlinear wave equations

Firmin K. N’gohisse, Théodore K. Boni (2009)

Archivum Mathematicum

In this paper, we consider the following initial-boundary value problem u t t ( x , t ) = ε L u ( x , t ) + f ( u ( x , t ) ) in Ω × ( 0 , T ) , u ( x , t ) = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = 0 in Ω , u t ( x , 0 ) = 0 in Ω , where Ω is a bounded domain in N with smooth boundary Ω , L is an elliptic operator, ε is a positive parameter, f ( s ) is a positive, increasing, convex function for s ( - , b ) , lim s b f ( s ) = and 0 b d s f ( s ) < with b = const > 0 . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation α ' ' ( t ) = f ( α ( t ) ) , t > 0 , α ( 0 ) = 0 , α ' ( 0 ) = 0 , as ε goes to zero. We also show that the above result remains...

Currently displaying 121 – 140 of 147