Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity.
Vengono considerate equazioni alle derivate parziali semilineari con caratteristiche multiple. Si studia in particolare la loro risolubilità locale e la buona positura del problema di Cauchy nell'ambito delle classi di Gevrey.
The surjectivity of the operator from the Gevrey space , , onto itself and its non-surjectivity from to is proved.
We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution to this problem. Moreover, a necessary and sufficient condition for the non-global existence...
In this paper several models in virus dynamics with and without immune response are discussed concerning asymptotic behaviour. The case of immobile cells but diffusing viruses and T-cells is included. It is shown that, depending on the value of the basic reproductive number R0 of the virus, the corresponding equilibrium is globally asymptotically stable. If R0 < 1 then the virus-free equilibrium has this property, and in case R0 > 1 there is a unique disease equilibrium which takes over this...
In this paper, we discuss the special diffusive hematopoiesis model with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.