The search session has expired. Please query the service again.
Let be an elliptic linear operator in a domain in . We imposse only weak regularity conditions on the coefficients. Then the adjoint exists in the sense of distributions, and we start by deducing a regularity theorem for distribution solutions of equations of type given distribution. We then apply to R.M. Hervé’s theory of adjoint harmonic spaces. Some other properties of are also studied. The results generalize earlier work of the author.
We consider pure mth order subcoercive operators with complex coefficients acting on a connected nilpotent Lie group. We derive Gaussian bounds with the correct small time singularity and the optimal large time asymptotic behaviour on the heat kernel and all its derivatives, both right and left. Further we prove that the Riesz transforms of all orders are bounded on the Lp -spaces with p ∈ (1, ∞). Finally, for second-order operators with real coefficients we derive matching Gaussian lower bounds...
Currently displaying 1 –
2 of
2