The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 104

Showing per page

Existence of optimal maps in the reflector-type problems

Wilfrid Gangbo, Vladimir Oliker (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider probability measures μ and ν on a d-dimensional sphere in 𝐑 d + 1 , d 1 , and cost functions of the form c ( 𝐱 , 𝐲 ) = l ( | 𝐱 - 𝐲 | 2 2 ) that generalize those arising in geometric optics where l ( t ) = - log t . We prove that if μ and ν vanish on ( d - 1 ) -rectifiable sets, if |l'(t)|>0, lim t 0 + l ( t ) = + , and g ( t ) : = t ( 2 - t ) ( l ' ( t ) ) 2 is monotone then there exists a unique optimal map To that transports μ onto ν , where optimality is measured against c. Furthermore, inf 𝐱 | T o 𝐱 - 𝐱 | > 0 . Our approach is based on direct variational arguments. In the special case when l ( t ) = - log t , existence of optimal maps...

Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type

Stanisław Brzychczy (1993)

Annales Polonici Mathematici

Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where A u : = i , j = 1 m a i j ( x ) ( ² u ) / ( x i x j ) , x = ( x 1 , . . . , x m ) G m , G is a bounded domain with C 2 + α (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real L p ( G ̅ ) function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin’s method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower...

Existence of solutions for some elliptic problems with critical Sobolev exponents.

Mario Zuluaga (1989)

Revista Matemática Iberoamericana

Let Ω be a bounded domain in Rn with n ≥ 3. In this paper we are concerned with the problem of finding u ∈ H01 (Ω) satisfying the nonlinear elliptic problemsΔu + |u|(n+2/n-2) + f(x) = 0  in Ω and u(x) = 0 on ∂Ω, andΔu + u + |u|(n+2/n-2) + f(x) = 0  in Ω and u(x) = 0 on ∂Ω, when of f ∈ L∞(Ω).

Currently displaying 61 – 80 of 104