The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 9 of 9

Showing per page

Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations

Joanna Rencławowicz (1998)

Applicationes Mathematicae

We examine the parabolic system of three equations u t - Δu = v p , v t - Δv = w q , w t - Δw = u r , x ∈ N , t > 0 with p, q, r positive numbers, N ≥ 1, and nonnegative, bounded continuous initial values. We obtain global existence and blow up unconditionally (that is, for any initial data). We prove that if pqr ≤ 1 then any solution is global; when pqr > 1 and max(α,β,γ) ≥ N/2 (α, β, γ are defined in terms of p, q, r) then every nontrivial solution exhibits a finite blow up time.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Currently displaying 1 – 9 of 9

Page 1