The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems

Stephan Luckhaus, Yoshie Sugiyama (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the following reaction-diffusion equation: ( KS ) u t = · u m - u q - 1 v , x N , 0 < t < , 0 = Δ v - v + u , x N , 0 < t < , u ( x , 0 ) = u 0 ( x ) , x N , where N 1 , m > 1 , q max { m + 2 N , 2 } .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of q max { m + 2 N , 2 } , the above problem (KS) is solvable globally in time for “small L N ( q - m ) 2 data”. Moreover, the decay of the solution (u,v) in L p ( N ) was proved. In this paper, we consider the case of “ q max { m + 2 N , 2 } and small L data” with any fixed N ( q - m ) 2 and show that (i) there exists a time global solution (u,v) of (KS) and it decays to...

Currently displaying 1 – 4 of 4

Page 1