The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 37

Showing per page

Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions

Marie-Josée Jasor, Laurent Lévi (2003)

Annales mathématiques Blaise Pascal

We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of p , 1 p < + . In order to prove the L 1 -convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in L together with a weak formulation of boundary conditions for scalar conservation laws.

Currently displaying 1 – 20 of 37

Page 1 Next