Global infinite energy solutions of the critical semilinear wave equation.
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...
We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping mechanism...