The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2881 –
2900 of
4762
Consider the ordinary differential equation
(1) ẋ = Lx + K(x)
on an infinite-dimensional Hilbert space E, where L is a bounded linear operator on E which is assumed to be strongly indefinite and K: E → E is a completely continuous but not necessarily locally Lipschitzian map. Given any isolating neighborhood N relative to equation (1) we define a Conley-type index of N. This index is based on Galerkin approximation of equation (1) by finite-dimensional ODEs and extends...
Given d ≥ 2 consider the family of polynomials for c ∈ ℂ. Denote by the Julia set of and let be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters : those for which the critical point 0 is not recurrent by and without parabolic cycles. The Hausdorff dimension of , denoted by , does not depend continuously on c at such ; on the other hand the function is analytic in . Our first result asserts that there is still some continuity...
Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set is continuous at σ₀ as the function of the parameter if and only if . Since on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of on an open and dense subset of ∂₀.
If is strictly increasing and continuous define . A transformation is called -close to , if for a strictly increasing and continuous function with . It is proved that the topological pressure is lower semi-continuous, and an upper bound for the jumps up is given. Furthermore the continuity of the maximal measure is shown, if a certain condition is satisfied. Then it is proved that the topological pressure is upper semi-continuous for every continuous function , if and only if is...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...
In this work we are interested in the study of controllability and
stabilization of the linearized Benjamin-Ono equation with
periodic boundary conditions, which is a generic model for the
study of weakly nonlinear waves with nonlocal dispersion. It is
well known that the Benjamin-Ono equation has infinite number of
conserved quantities, thus we consider only controls acting in the
equation such that the volume of the solution is conserved. We
study also the stabilization with a feedback law...
We show that for any irrational number α and a sequence of integers such that , there exists a continuous measure μ on the circle such that . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system.
On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence of integers such that and such that is dense on the circle if and only if θ ∉ ℚα + ℚ.
The aim of this paper is twofold. On the one hand, we want to discuss some methodological issues related to the notion of strange nonchaotic attractor. On the other hand, we want to formulate a precise definition of this kind of attractor, which is "observable" in the physical sense and, in the two-dimensional setting, includes the well known models proposed by Grebogi et al. and by Keller, and a wide range of other examples proposed in the literature. Furthermore, we analytically prove that a whole...
We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.
We define the concept of directional entropy for arbitrary -actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.
We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule , l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy , v⃗= (x,y) ∈ ℝ², is bounded above by if and by in the opposite case, where , .
We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.
Currently displaying 2881 –
2900 of
4762