Periodic points of linked twist mappings
We prove that the Poincaré map has at least fixed points (whose trajectories are contained inside the segment W) where the homeomorphism is given by the segment W.
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
Two theorems about the existence of periodic solutions with prescribed energy for second order Hamiltonian systems are obtained. One gives existence for almost all energies under very natural conditions. The other yields existence for all energies under a further condition.
In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
In this paper, we deal with the existence of periodic solutions of the -Laplacian Hamiltonian system Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.
By using the topological degree theory and some analytic methods, we consider the periodic boundary value problem for the singular dissipative dynamical systems with p-Laplacian: , x(0) = x(T), x’(0) = x’(T). Sufficient conditions to guarantee the existence of solutions are obtained under no restriction on the damping forces d/dt gradF(x).