Displaying 321 – 340 of 490

Showing per page

On the Hausdorff dimension of piecewise hyperbolic attractors

Tomas Persson (2010)

Fundamenta Mathematicae

We study non-invertible piecewise hyperbolic maps in the plane. The Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents, provided that the map satisfies a transversality condition. Explicit examples of maps for which this condition holds are given.

On the heat kernel and the Korteweg--de Vries hierarchy

Plamen Iliev (2005)

Annales de l’institut Fourier

We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.

On the heights of totally p -adic numbers

Paul Fili (2014)

Journal de Théorie des Nombres de Bordeaux

Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally p -adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.

On the helix equation

Mohamed Hmissi, Imene Ben Salah, Hajer Taouil (2012)

ESAIM: Proceedings

This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω) of the helix equation H ( 0 ) = 0 ; H ( s + t,ω ) = H ( s, Φ ( t,ω ) ) + H ( t,ω ) where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined...

On the hierarchies of higher order mKdV and KdV equations

Axel Grünrock (2010)

Open Mathematics

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H ^ s r defined by the norm v 0 H ^ s r : = ξ s v 0 ^ L ξ r ' , ξ = 1 + ξ 2 1 2 , 1 r + 1 r ' = 1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2 j - 1 2 r ' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2 j - 1 2 r ' . The results for r = 2 - so far in...

On the Hyperbolic Hausdorff Dimension of the Boundary of a Basin of Attraction for a Holomorphic Map and of Quasirepellers

Feliks Przytycki (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

e prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2:1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain. The results extend an analogous fact for polynomials...

On the index theorem for symplectic orbifolds

Boris Fedosov, Bert-Wolfang Schulze, Nikolai Tarkhanov (2004)

Annales de l’institut Fourier

We give an explicit construction of the trace on the algebra of quantum observables on a symplectiv orbifold and propose an index formula.

On the integrability of the generalized Yang-Mills system

A. Lesfari, A. Elachab (2004)

Applicationes Mathematicae

We consider a hamiltonian system which, in a special case and under the gauge group SU(2), can be considered as a reduction of the Yang-Mills field equations. We prove explicitly, using the Lax spectral curve technique and the van Moerbeke-Mumford method, that the flows generated by the constants of motion are straight lines on the Jacobi variety of a genus two Riemann surface.

On the KAM - Theory Conditions for the Kirchhoff Top

Christov, Ognyan (1997)

Serdica Mathematical Journal

* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.In this paper the classical Kirchhoff case of motion of a rigid body in an infinite ideal fluid is considered. Then for the corresponding Hamiltonian system on the zero integral level, the KAM theory conditions are checked. In contrast to the known similar results, there exists a curve in the bifurcation diagram along which the Kolmogorov’s condition vanishes for certain values of the parameters.

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable...

Currently displaying 321 – 340 of 490