Displaying 321 – 340 of 386

Showing per page

Topology and measure of buried points in Julia sets

Clinton P. Curry, John C. Mayer, E. D. Tymchatyn (2013)

Fundamenta Mathematicae

It is well-known that the set of buried points of a Julia set of a rational function (also called the residual Julia set) is topologically “fat” in the sense that it is a dense G δ if it is non-empty. We show that it is, in many cases, a full-measure subset of the Julia set with respect to conformal measure and the measure of maximal entropy. We also address Hausdorff dimension of buried points in the same cases, and discuss connectivity and topological dimension of the set of buried points. Finally,...

Topology of Fatou components for endomorphisms of k : linking with the Green’s current

Suzanne Lynch Hruska, Roland K. W. Roeder (2010)

Fundamenta Mathematicae

Little is known about the global topology of the Fatou set U(f) for holomorphic endomorphisms f : k k , when k >1. Classical theory describes U(f) as the complement in k of the support of a dynamically defined closed positive (1,1) current. Given any closed positive (1,1) current S on k , we give a definition of linking number between closed loops in k s u p p S and the current S. It has the property that if lk(γ,S) ≠ 0, then γ represents a non-trivial homology element in H ( k s u p p S ) . As an application, we use these linking...

Topology of the regular part for infinitely renormalizable quadratic polynomials

Carlos Cabrera, Tomoki Kawahira (2010)

Fundamenta Mathematicae

We describe the well studied process of renormalization of quadratic polynomials from the point of view of their natural extensions. In particular, we describe the topology of the inverse limit of infinitely renormalizable quadratic polynomials and prove that when they satisfy a priori bounds, the topology is rigid modulo combinatorial equivalence.

Tower multiplexing and slow weak mixing

Terrence Adams (2015)

Colloquium Mathematicae

A technique is presented for multiplexing two ergodic measure preserving transformations together to derive a third limiting transformation. This technique is used to settle a question regarding rigidity sequences of weak mixing transformations. Namely, given any rigidity sequence for an ergodic measure preserving transformation, there exists a weak mixing transformation which is rigid along the same sequence. This establishes a wide range of rigidity sequences for weakly mixing dynamical systems....

Trajectories of polynomial vector fields and ascending chains of polynomial ideals

Dmitri Novikov, Sergei Yakovenko (1999)

Annales de l'institut Fourier

We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in n and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned...

Trajectory of the turning point is dense for a co-σ-porous set of tent maps

Karen Brucks, Zoltán Buczolich (2000)

Fundamenta Mathematicae

It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map T a with slope a is dense in the interval of transitivity of T a . We prove that the complement of this set of parameters of full measure is σ-porous.

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate | x d : M g ( x ) > α | C d Φ ( c | g | / α ) for...

Currently displaying 321 – 340 of 386