Topological entropy and variation for transitive maps
The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces and a sequence of continuous maps , , is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of . As an application we construct a large class of smooth triangular maps of the square of type and positive...
Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.
For a continuous map f preserving orbits of an aperiodic -action on a compact space, its displacement function assigns to x the “time” it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.
In his classical paper [Ann. of Math. 45 (1944)] P. R. Halmos shows that weak mixing is generic in the measure preserving transformations. Later, in his book, Lectures on Ergodic Theory, he gave a more streamlined proof of this fact based on a fundamental lemma due to V. A. Rokhlin. For this reason the name of Rokhlin has been attached to a variety of results, old and new, relating to the density of conjugacy classes in topological groups. In this paper we will survey some of the new developments...
We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.
For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f. This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.
A continuous map of the interval is chaotic iff there is an increasing sequence of nonnegative integers such that the topological sequence entropy of relative to , , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers there is a chaotic map of the interval such that ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric...
A subset S of a topological dynamical system (X,f) containing at least two points is called a scrambled set if for any x,y ∈ S with x ≠ y one has and , d being the metric on X. The system (X,f) is called Li-Yorke chaotic if it has an uncountable scrambled set. These notions were developed in the context of interval maps, in which the existence of a two-point scrambled set implies Li-Yorke chaos and many other chaotic properties. In the present paper we address several questions about scrambled...
We prove that generic convergent diagrams of proper smooth mappings are topologically stable. In proving global properties of diagrams we propose a generalization of the concept of singularity for diagrams, and we establish the geometry of composite mappings.
Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.
Soient une variété de Hadamard de courbure et un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de , le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.
This article aims to explore the theory of unstable attractors with topological tools. A short topological analysis of the isolating blocks for unstable attractors with no external explosions leads quickly to sharp results about their shapes and some hints on how Conley's index is related to stability. Then the setting is specialized to the case of flows in ℝⁿ, where unstable attractors are seen to be dynamically complex since they must have external explosions.