Solutions explosives exceptionnelles
Soit une solution à l’infini d’une équation différentielle algébrique d’ordre , . Nous donnons un critère géométrique pour que les germes à l’infini de et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.
Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando...
Let X be a reflexive Banach space and (Ω,,μ) be a probability measure space. Let T: M(μ;X) → M(μ;X) be a linear operator, where M(μ;X) is the space of all X-valued strongly measurable functions on (Ω,,μ). We assume that T is continuous in the sense that if (fₙ) is a sequence in M(μ;X) and in measure for some f ∈ M(μ;X), then also in measure. Then we consider the functional equation f = (T-I)h, where f ∈ M(μ;X) is given. We obtain several conditions for the existence of h ∈ M(μ;X) satisfying...
In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called -matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from...
Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
We consider a large class of piecewise expanding maps T of [0, 1] with a neutral fixed point, and their associated Markov chains Yi whose transition kernel is the Perron–Frobenius operator of T with respect to the absolutely continuous invariant probability measure. We give a large class of unbounded functions f for which the partial sums of f○Ti satisfy both a central limit theorem and a bounded law of the iterated logarithm. For the same class, we prove that the partial sums of f(Yi) satisfy a...
The purpose of this paper is to establish some common fixed point results for -nondecreasing mappings which satisfy some nonlinear contractions of rational type in the framework of metric spaces endowed with a partial order. Also, as a consequence, a result of integral type for such class of mappings is obtained. The proved results generalize and extend some of the results of J. Harjani, B. Lopez, K. Sadarangani (2010) and D. S. Jaggi (1977).
We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter -form are holonomic.