Sur une application de la théorie des correspondances développables de E. Čech
Dans un espace linéaire -fois étendu on peut introduire à l’aide de deux fonctions une certaine métrique (les propriétés de ces fonctions étant précisées dans l’article présenté), les courbes géodésiques au sens de centre métrique sont par le système correspondant des équations différentielles d’ordre deux sous les conditions initiales globalement déterminées. Dans le cas et pour une élection simple des fonctions considérées les sourbes géodésiques correspondent aux trajectories d’un point matériel...
We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.
Building on the kneading theory for Lozi maps introduced by Yutaka Ishii, in 1997, we introduce a symbolic method to compute its largest Lyapunov exponent. We use this method to study the behavior of the largest Lyapunov exponent for the set of points whose forward and backward orbits remain bounded, and find the maximum value that the largest Lyapunov exponent can assume.
A nonuniformly entropy expanding map is any ¹ map defined on a compact manifold whose ergodic measures with positive entropy have only nonnegative Lyapunov exponents. We prove that a nonuniformly entropy expanding map T with r > 1 has a symbolic extension and we give an explicit upper bound of the symbolic extension entropy in terms of the positive Lyapunov exponents by following the approach of T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].
We prove that maps with on a compact surface have symbolic extensions, i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp upper bound on the so-called symbolic extension entropy, which is the infimum of the topological entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and T. Downarowicz in dimension two and improves a previous result of the author [11].
The parareal in time algorithm allows for efficient parallel numerical simulations of time-dependent problems. It is based on a decomposition of the time interval into subintervals, and on a predictor-corrector strategy, where the propagations over each subinterval for the corrector stage are concurrently performed on the different processors that are available. In this article, we are concerned with the long time integration of Hamiltonian systems. Geometric, structure-preserving integrators are...