The search session has expired. Please query the service again.
We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.
It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...
We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...
We also prove a long time existence result; more precisely we prove that for fixed there exists a set , such that any data , evolves up to time into a solution with , . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space , that is in the supercritical scaling regime.
We define Bäcklund–Darboux transformations in Sato’s Grassmannian.
They can be regarded as Darboux transformations on maximal algebras
of commuting ordinary differential operators. We describe the action of these
transformations on related objects: wave functions, tau-functions and spectral
algebras.
In our paper, the theory of bi-integrable and tri-integrable couplings is generalized to the discrete case. First, based on the six-dimensional real special orthogonal Lie algebra SO(4), we construct bi-integrable and tri-integrable couplings associated with SO(4) for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by the variational identities....
In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. , under some bilinear Strichartz assumption. We will find some , such that the solution is global for .
Currently displaying 1 –
20 of
55