The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a compact subset of a separable Hilbert space with finite fractal dimension , and an orthogonal projection in of rank greater than or equal to . For every , there exists an orthogonal projection in of the same rank as , which is injective when restricted to and such that . This result follows from Mañé’s paper. Thus the inverse of the restricted mapping is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...
We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.
We consider a free boundary problem of a two-dimensional Navier-Stokes shear flow. There exist a unique global in time solution of the considered problem as well as the global attractor for the associated semigroup. As in [1] and [2], we estimate from above the dimension of the attractor in terms of given data and the geometry of the domain of the flow. This research is motivated by a free boundary problem from lubrication theory where the domain of the flow is usually very thin and the roughness...
In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...
Currently displaying 1 –
9 of
9