The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 23

Showing per page

A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri (2021)

Mathematica Bohemica

Consider the linear congruence equation x 1 + ... + x k b ( mod n s ) for b , n , s . Let ( a , b ) s denote the generalized gcd of a and b which is the largest l s with l dividing a and b simultaneously. Let d 1 , ... , d τ ( n ) be all positive divisors of n . For each d j n , define 𝒞 j , s ( n ) = { 1 x n s : ( x , n s ) s = d j s } . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on x i . We generalize their result with generalized gcd restrictions on x i and prove that for the above linear congruence, the number of solutions...

A note on rearrangements of Fourier coefficients

Hugh L. Montgomery (1976)

Annales de l'institut Fourier

Let f ( x ) Σ a n e 2 π i n x , f * ( x ) n = 0 a * n cos 2 π n x , where the a * n are the numbers | a n | rearranged so that a n * 0 . Then for any convex increasing ψ , ψ ( | f | 2 1 ψ ( 20 | f * | 2 1 . The special case ψ ( t ) = t q / 2 , q 2 , gives f q 5 f * q an equivalent of Littlewood.

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Algebrability of the set of non-convergent Fourier series

Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)

Studia Mathematica

We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.

Currently displaying 1 – 20 of 23

Page 1 Next